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Bacteria are the most numerous organisms in the biosphere. How
they survive depends on their adaptability, and their ability to thrive
in the most extreme conditions is fascinating (e.g., in intense UV
radiation under Archean-mimicking conditions).1 Manganese is the
second most abundant transition metal in the earth’s crust. Bacterial
catalytic oxidation of water-soluble Mn(II) to water-insoluble
manganese oxide (MnOx) is widely believed to be the dominant
process of MnOx mineral formation in aqueous environments
because bacteria can catalyze the oxidation of Mn(II) much faster
(by up to 105 times) than abiotic catalysts.2 A number of Mn(II)-
oxidizing bacteria produce MnOx around the cell. Whether this
formation is fortuitous or metabolically functional still remains an
open question.3 For example, it has been proposed that the
precipitate formation around the bacterial cell can generate energy
(ATP),3 the MnOx coating can protect the cell from stress induced
by UV radiation and toxic metals and oxygen species,4 and that
bacteria can acquire low molecular weight organic compounds
needed for their growth by using the MnOx to oxidize complex
humic substances.5 Additionally, MnOx can play a key role in
controlling the geochemical cycles of other elements such as Co.6

Generally, the most important variables for determining the
physicochemical properties and reactivity are the structure and
surface area of MnOx materials.7-9 Therefore, structural information
on bacterially produced MnOx may provide important clues for
understanding the functions and benefits that bacteria derive from
MnOx precipitates. X-ray absorption spectroscopy [XAS) XANES
(X-ray absorption near-edge structure)+ EXAFS (extended X-ray
absorption fine structure)] has been extensively used to study the
average local structure of manganese in various MnOx minerals.10-12

The application of XAS for characterizing the structure of bacte-
rially produced MnOx is limited because of the difficulty in
distinguishing several MnOx materials with similar spectral features.

We report the first Mn K-edge radial distribution function (RDF,
Fourier transform of EXAFS spectrum) measured for MnOx

(hereafter SP6-MnOx) produced by a freshwater bacterium,Lep-
tothrix discophoraSP-6 (hereafter SP-6) (Figure 1). We compare
this to EXAFS data from MnOx reference materials with ap-
proximately+4 oxidation state of Mn because our XANES spectra
showed that the average oxidation state of Mn in SP6-MnOx is
∼3.8. The first three bands (denoted by dotted lines in Figure 1) in
the RDF measured for the MnO2 materials correspond to contribu-
tions from the nearest oxygen atomic shell, edge- and corner-shared
MnO6 octahedra, respectively.11 The RDF band intensity depends
on the number of identical scatterers contributing to each band. In
the tunnel MnO2 materials, the proportion of corner-shared

octahedra to edge-shared octahedra increases as the tunnel size
decreases (3× 3 to 1 × 1).10

Pyrolusite, ramsdellite, holladite, romanechite, synthetic birnes-
site,δ-MnO2, chalcophanite, and todorokite were studied previously
by EXAFS spectroscopy, and our EXAFS measurements of the
reference MnO2 materials match well with previous results.10,11Our
EXAFS spectra show that the Mn coordination in SP6-MnOx is
very similar to both chalcophanite and todorokite. Although layered
chalcophanite and 3× 3-tunnel todorokite have very different
structures and compositions,13 they show very similar RDF because
of similar ratios10 of edge-shared to corner-shared octahedral. Hence,
the EXAFS data cannot assign the SP6-MnOx to one of the two
mineral structures.

UV Raman spectra of the MnO2 materials are seen in Figure 2.
The UV Raman band positions of pyrolusite and ramsdellite are in
general agreement with published14,15 visible Raman data. Raman
spectroscopic studies of other reference materials (cryptomelane,
chalcophanite, synthetic birnessite,δ-MnO2, synthetic buserite, and
todorokite) and SP6-MnOx have not been published previously.
Cryptomelane is a hollandite-like mineral and has the same 2× 2
tunnel structure as hollandite.13 UV Raman spectral features from
all the reference MnO2 materials except for todorokite are different
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Figure 1. Mn K-edge radial distribution function (RDF) measured for (A)
pyrolusite: T(1 × 1), (B) ramsdellite:T(1 × 2), (C) hollandite:T(2 × 2),
(D) romanechite:T(2 × 3), (E) synthetic birnessite: layered, (F)δ-MnO2,
(G) chalcophanite: layered, (H) todorokite:T(3 × 3), and (I) SP6-MnOx.
T denotes a tunnel structure, and the dimensions (numbers of MnO6

octahedra) of the tunnel follow in parentheses (m × n).
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from SP6-MnOx in the 300-800 cm-1 region, where14 the
vibrational bands of MnO2 materials occur.

The observed UV Raman spectra of SP6-MnOx and todorokite
mixture (Figure 2, G and H) in the 300-800 cm-1 region match in
terms of the width of Mn-O stretching bands centered at 660 and
630 cm-1. The difference in position (30 cm-1) between the two
bands is the result of different degrees of interaction between either
todorokite or SP6-MnOx and hydratedcations (or water) in the
tunnels of the manganese oxide (possibly because of different
concentrations of hydrated cations or water in the tunnels). The
supporting evidence for this was our observation that the two bands
merge into a single band upon dehydration.16 Also, a strong Raman
band centered at 630 cm-1 measured from the todorokite mixture
(Figure 2G) and todorokite mineral16 matches well with the
estimated Raman frequency of todorokite.17 Therefore, SP6-MnOx
most closely resembles todorokite among the MnO2 studied using
EXAFS and UV Raman spectroscopy. X-ray diffraction (XRD)
evidence for the formation of highly crystalline todorokite produced
by a marine bacterium is supplied,18 although todorokite and
buserite show very similar XRD patterns because of similard
spacings.

The TEM image of the SP6-MnOx shows a disordered array of
fibrils around a SP-6 cell (Figure 3). This agrees with the previously
reported morphology.19 The particle length and width of SP6-MnOx,
estimated from the micrograph (Figure 3B), are in the range 20-
100 nm and 1.5-4 nm, respectively. In summary, our microscopic
and spectroscopic studies indicate that the biologically induced
Mn(II) oxidation products (located within sheaths formed around
SP-6 cells) are nanosized, todorokite-like20 porous MnO2.
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Figure 2. UV Raman spectra of (A) pyrolusite, (B) ramsdellite, (C)
cryptomelane, (D) chalcophanite, (E) synthetic birnessite, (F)δ-MnO2, (G)
synthetic buserite, (H) todorokite mixture, i.e., todorokite mixed with the
MSVP (mineral salts, vitamins, and pyruvate) consumed by bacteria, and
(I) SP6-MnOx mixed with the MSVP consumed by bacteria. Since samples
G and H include the growth medium, MSVP, we obtained the UV Raman
spectra of the individual components of the MSVP and compared them to
the Raman spectra of the two samples. Two broad bands at∼1350 cm-1

and∼1600 cm-1 are due to organic compounds (HEPES buffer solution
and pyruvate) found in the MSVP. The bands centered at 990, 1080, 1055/
1402, and 1558 cm-1 are attributed to the HPO42-, calcite, NO3

-, and O2

(g), respectively.

Figure 3. TEM micrographs of an unstained, melamin-embedded SP-6
cell coated with precipitated MnOx (A and B). The cell features (∼1 µm in
diameter) in (A) are invisible because no staining solution was applied for
TEM imaging. (B) is a magnified TEM image of a segment on the (A)
micrograph.
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