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Bacteria are the most numerous organisms in the biosphere. How Oxygen
they survive depends on their adaptability, and their ability to thrive ‘ Mn(Edge)

in the most extreme conditions is fascinating (e.g., in intense UV B Mn(Corner)
radiation under Archean-mimicking conditioridylanganese is the - f

second most abundant transition metal in the earth’s crust. Bacterial
catalytic oxidation of water-soluble Mn(ll) to water-insoluble
manganese oxide (Mn{is widely believed to be the dominant
process of Mn® mineral formation in aqueous environments
because bacteria can catalyze the oxidation of Mn(Il) much faster
(by up to 10 times) than abiotic catalystsA number of Mn(ll)-

meO I -

>
oxidizing bacteria produce MnQCaround the cell. Whether this § E
formation is fortuitous or metabolically functional still remains an 2
open questioA. For example, it has been proposed that the - D
precipitate formation around the bacterial cell can generate energy c
(ATP)_2 the MnQ; coating can protect the cell from stress induced
by UV radiation and toxic metals and oxygen spediesid that B
bacteria can acquire low molecular weight organic compounds A
needed for their growth by using the Mp@ oxidize complex ; L
humic substancesAdditionally, MnQ, can play a key role in 1 2 3 4 5 &
controlling the geochemical cycles of other elements such & Co. Radial distance (A)

Ge_nerally, _the most important varigb_les for determining the Figure 1. Mn K-edge radial distribution function (RDF) measured for (A)
physicochemical properties and reactivity are the structure and pyrolusite: T(1 x 1), (B) ramsdellite: T(1 x 2), (C) hollandite: T(2 x 2),
surface area of MnOmnaterials’~® Therefore, structural information (D) romanechite:T(2 x 3), (E) synthetic birnessite: layered, (GMnO,
on bacterially produced MnOmay provide important clues for () chalcophanite: layered, (H) todorokitd(3 x 3), and (I) SP6-MnQ

derstanding the functions and benefits that bacteria derive from denotes a tunnel structure, and the dimensions (numbers ofeMnO
un . 9 A octahedra) of the tunnel follow in parenthesesx n).

MnOx precipitates. X-ray absorption spectroscopy [XAXANES

(X-ray absorption near-edge structureEXAFS (extended X-ray  sctahedra to edge-shared octahedra increases as the tunnel size
absorption fine structure)] has been extensively used to study thedecreases (% 3t0 1x 1)10

average local structure of manganese in various Mniderals!o-12

- - Pyrolusite, ramsdellite, holladite, romanechite, synthetic birnes-
The application of XAS for characterizing the structure of bacte-

. > o ’ site,0-MnO,, chalcophanite, and todorokite were studied previously
rially produced MnQ is limited because of the difficulty in  p ExAFS spectroscopy, and our EXAFS measurements of the
distinguishing several Mn@Qnaterials with similar spectral features.  (oference Mn@materials match well with previous resutstOur

We report the first Mn K-edge radial distribution function (RDF, gxars spectra show that the Mn coordination in SP6-Mi©

Fourier transform of EXAFS spectrum) measured for MnO yery similar to both chalcophanite and todorokite. Although layered
(hereafter SP6-Mn@ produced by a freshwater bacteriubep- chalcophanite and 3 3-tunnel todorokite have very different

tothrix discophoraSP-6 (hereafter SP-6) (Figure 1). We compare  g,ctyres and compositiofsthey show very similar RDF because
this to EXAFS data from MnQreference materials with ap- ot similar ratiod® of edge-shared to corner-shared octahedral. Hence,
proximately+4 oxidation state of Mn because our XANES spectra the EXAFS data cannot assign the SP6-Mn@one of the two
showed that the average oxidation state of Mn in SP6-MisO mineral structures.

~3.8. The first three bands (denoted by dotted lines in Figure 1) in |\ \y Raman spectra of the Mn@naterials are seen in Figure 2.
the RDF measured for the Ma@naterials correspond to contribu- 6 y\/ Raman band positions of pyrolusite and ramsdellite are in
tions from the nearest oxygen atomic shell, edge- anq corner-sharedgenera| agreement with publisHééb visible Raman data. Raman
MnOs octahedra, respectivety.The RDF band intensity depends  qnecroscopic studies of other reference materials (cryptomelane,
on the number of identical scatterers contributing to each band. In chalcophanite, synthetic birnessiteMnO,, synthetic buserite, and
the tunnel MnQ materials, the proportion of cormer-shared  ,q5okite) and SP6-MnOhave not been published previously.
Cryptomelane is a hollandite-like mineral and has the same22

T Department of Chemistry, IEC, and CCSS. B
# Department of Givil and Environmental Engineering and IEC. tunnel structure as holland!%é.UV Raman spectra! feature§ from
§ Present address: Pontificia Universidad ‘@lasn Chile. all the reference Mn@materials except for todorokite are different
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Figure 2. UV Raman spectra of (A) pyrolusite, (B) ramsdellite, (C)
cryptomelane, (D) chalcophanite, (E) synthetic birnessiteg{MnO,, (G)
synthetic buserite, (H) todorokite mixture, i.e., todorokite mixed with the
MSVP (mineral salts, vitamins, and pyruvate) consumed by bacteria, and
(1) SP6-MnQ mixed with the MSVP consumed by bacteria. Since samples
G and H include the growth medium, MSVP, we obtained the UV Raman
spectra of the individual components of the MSVP and compared them to
the Raman spectra of the two samples. Two broad band<.350 cnr?!
and~1600 cnt?! are due to organic compounds (HEPES buffer solution
and pyruvate) found in the MSVP. The bands centered at 990, 1080, 1055/
1402, and 1558 cnt are attributed to the HP®", calcite, NQ~, and Q
(g), respectively.

T T
400 600

from SP6-MnQ in the 300-800 cnt! region, wher& the
vibrational bands of Mn®@materials occur.

The observed UV Raman spectra of SP6-Mm@d todorokite
mixture (Figure 2, G and H) in the 36@00 cnT?! region match in
terms of the width of Mr-O stretching bands centered at 660 and
630 cn1. The difference in position (30 crd) between the two

bands is the result of different degrees of interaction between either

todorokite or SP6-Mn@Qand hydratedcations (or water) in the
tunnels of the manganese oxide (possibly because of different
concentrations of hydrated cations or water in the tunnels). The

supporting evidence for this was our observation that the two bands

merge into a single band upon dehydratiéAlso, a strong Raman
band centered at 630 crhmeasured from the todorokite mixture
(Figure 2G) and todorokite minetél matches well with the
estimated Raman frequency of todoroKit& herefore, SP6-Mn©
most closely resembles todorokite among the Mstdied using
EXAFS and UV Raman spectroscopy. X-ray diffraction (XRD)
evidence for the formation of highly crystalline todorokite produced
by a marine bacterium is supplieé® although todorokite and
buserite show very similar XRD patterns because of similar
spacings.

The TEM image of the SP6-MnGhows a disordered array of
fibrils around a SP-6 cell (Figure 3). This agrees with the previously
reported morphologi? The particle length and width of SP6-MpO
estimated from the micrograph (Figure 3B), are in the range 20
100 nm and 1.54 nm, respectively. In summary, our microscopic
and spectroscopic studies indicate that the biologically induced
Mn(ll) oxidation products (located within sheaths formed around
SP-6 cells) are nanosized, todorokite-fkporous MnQ.
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£ E Figure 3. TEM micrographs of an unstained, melamin-embedded SP-6
W cell coated with precipitated Mn@A and B). The cell features{1 um in
D diameter) in (A) are invisible because no staining solution was applied for
/\-»me\»«w TEM imaging. (B) is a magnified TEM image of a segment on the (A)
A n c micrograph.
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at the DND-CAT on the Advanced Photon Source.
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