
Communication

Nanocrystalline Todorokite-Like Manganese Oxide Produced by Bacterial Catalysis

Hack-Sung Kim, Pablo A. Pastn, Jean-Franois Gaillard, and Peter C. Stair

J. Am. Chem. Soc., 2003, 125 (47), 14284-14285• DOI: 10.1021/ja0375784 • Publication Date (Web): 31 October 2003

Downloaded from http://pubs.acs.org on March 30, 2009

More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Links to the 2 articles that cite this article, as of the time of this article download
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML

Published on Web 10/31/2003

Nanocrystalline Todorokite-Like Manganese Oxide Produced by Bacterial Catalysis

Hack-Sung Kim,[†] Pablo A. Pastén,^{‡,§} Jean-François Gaillard,[‡] and Peter C. Stair^{*,†}

Institute for Environmental Catalysis (IEC), Center for Catalysis and Surface Science (CCSS), Department of Chemistry, and Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois 60208

Received July 28, 2003; E-mail: pstair@northwestern.edu

Bacteria are the most numerous organisms in the biosphere. How they survive depends on their adaptability, and their ability to thrive in the most extreme conditions is fascinating (e.g., in intense UV radiation under Archean-mimicking conditions).¹ Manganese is the second most abundant transition metal in the earth's crust. Bacterial catalytic oxidation of water-soluble Mn(II) to water-insoluble manganese oxide (MnO_x) is widely believed to be the dominant process of MnO_x mineral formation in aqueous environments because bacteria can catalyze the oxidation of Mn(II) much faster (by up to 10⁵ times) than abiotic catalysts.² A number of Mn(II)oxidizing bacteria produce MnO_x around the cell. Whether this formation is fortuitous or metabolically functional still remains an open question.³ For example, it has been proposed that the precipitate formation around the bacterial cell can generate energy (ATP),³ the MnO_x coating can protect the cell from stress induced by UV radiation and toxic metals and oxygen species,⁴ and that bacteria can acquire low molecular weight organic compounds needed for their growth by using the MnO_r to oxidize complex humic substances.⁵ Additionally, MnO_x can play a key role in controlling the geochemical cycles of other elements such as Co.6

Generally, the most important variables for determining the physicochemical properties and reactivity are the structure and surface area of MnO_x materials.^{7–9} Therefore, structural information on bacterially produced MnO_x may provide important clues for understanding the functions and benefits that bacteria derive from MnO_x precipitates. X-ray absorption spectroscopy [XAS = XANES] (X-ray absorption near-edge structure) + EXAFS (extended X-ray absorption fine structure)] has been extensively used to study the average local structure of manganese in various MnOx minerals.¹⁰⁻¹² The application of XAS for characterizing the structure of bacterially produced MnO_x is limited because of the difficulty in distinguishing several MnO_x materials with similar spectral features.

We report the first Mn K-edge radial distribution function (RDF, Fourier transform of EXAFS spectrum) measured for MnO_x (hereafter SP6-MnO_x) produced by a freshwater bacterium, Leptothrix discophora SP-6 (hereafter SP-6) (Figure 1). We compare this to EXAFS data from MnOx reference materials with approximately +4 oxidation state of Mn because our XANES spectra showed that the average oxidation state of Mn in SP6-MnO_x is \sim 3.8. The first three bands (denoted by dotted lines in Figure 1) in the RDF measured for the MnO2 materials correspond to contributions from the nearest oxygen atomic shell, edge- and corner-shared MnO₆ octahedra, respectively.¹¹ The RDF band intensity depends on the number of identical scatterers contributing to each band. In the tunnel MnO₂ materials, the proportion of corner-shared

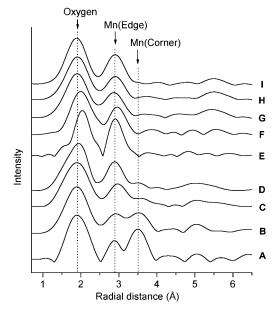
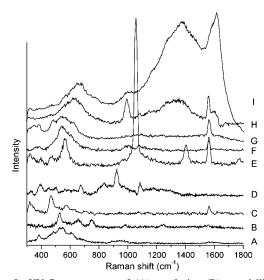


Figure 1. Mn K-edge radial distribution function (RDF) measured for (A) pyrolusite: $T(1 \times 1)$, (B) ramsdellite: $T(1 \times 2)$, (C) hollandite: $T(2 \times 2)$, (D) romanechite: $T(2 \times 3)$, (E) synthetic birnessite: layered, (F) δ -MnO₂, (G) chalcophanite: layered, (H) todorokite: $T(3 \times 3)$, and (I) SP6-MnO_x. T denotes a tunnel structure, and the dimensions (numbers of MnO₆ octahedra) of the tunnel follow in parentheses $(m \times n)$.

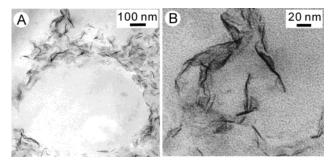

octahedra to edge-shared octahedra increases as the tunnel size decreases $(3 \times 3 \text{ to } 1 \times 1)$.¹⁰

Pyrolusite, ramsdellite, holladite, romanechite, synthetic birnessite, δ -MnO₂, chalcophanite, and todorokite were studied previously by EXAFS spectroscopy, and our EXAFS measurements of the reference MnO₂ materials match well with previous results.^{10,11} Our EXAFS spectra show that the Mn coordination in SP6-MnO_x is very similar to both chalcophanite and todorokite. Although layered chalcophanite and 3×3 -tunnel todorokite have very different structures and compositions,13 they show very similar RDF because of similar ratios¹⁰ of edge-shared to corner-shared octahedral. Hence, the EXAFS data cannot assign the SP6-MnO_x to one of the two mineral structures.

UV Raman spectra of the MnO₂ materials are seen in Figure 2. The UV Raman band positions of pyrolusite and ramsdellite are in general agreement with published^{14,15} visible Raman data. Raman spectroscopic studies of other reference materials (cryptomelane, chalcophanite, synthetic birnessite, δ -MnO₂, synthetic buserite, and todorokite) and SP6-MnO_x have not been published previously. Cryptomelane is a hollandite-like mineral and has the same 2×2 tunnel structure as hollandite.13 UV Raman spectral features from all the reference MnO2 materials except for todorokite are different

Department of Chemistry, IEC, and CCSS.

[‡] Department of Civil and Environmental Engineering and IEC. [§] Present address: Pontificia Universidad Católica, Chile.


Figure 2. UV Raman spectra of (A) pyrolusite, (B) ramsdellite, (C) cryptomelane, (D) chalcophanite, (E) synthetic birnessite, (F) δ -MnO₂, (G) synthetic buserite, (H) todorokite mixture, i.e., todorokite mixed with the MSVP (mineral salts, vitamins, and pyruvate) consumed by bacteria, and (I) SP6-MnO₃ mixed with the MSVP consumed by bacteria. Since samples G and H include the growth medium, MSVP, we obtained the UV Raman spectra of the individual components of the MSVP and compared them to the Raman spectra of the two samples. Two broad bands at ~1350 cm⁻¹ and ~1600 cm⁻¹ are due to organic compounds (HEPES buffer solution and pyruvate) found in the MSVP. The bands centered at 990, 1080, 1055/1402, and 1558 cm⁻¹ are attributed to the HPO₄²⁻, calcite, NO₃⁻, and O₂ (g), respectively.

from SP6-MnO_x in the 300-800 cm⁻¹ region, where¹⁴ the vibrational bands of MnO₂ materials occur.

The observed UV Raman spectra of SP6-MnO_x and todorokite mixture (Figure 2, G and H) in the 300-800 cm⁻¹ region match in terms of the width of Mn-O stretching bands centered at 660 and 630 cm⁻¹. The difference in position (30 cm⁻¹) between the two bands is the result of different degrees of interaction between either todorokite or SP6-MnO_x and *hydrated* cations (or water) in the tunnels of the manganese oxide (possibly because of different concentrations of hydrated cations or water in the tunnels). The supporting evidence for this was our observation that the two bands merge into a single band upon dehydration.¹⁶ Also, a strong Raman band centered at 630 cm⁻¹ measured from the todorokite mixture (Figure 2G) and todorokite mineral¹⁶ matches well with the estimated Raman frequency of todorokite.¹⁷ Therefore, SP6-MnO_x most closely resembles todorokite among the MnO2 studied using EXAFS and UV Raman spectroscopy. X-ray diffraction (XRD) evidence for the formation of highly crystalline todorokite produced by a *marine* bacterium is supplied,¹⁸ although todorokite and buserite show very similar XRD patterns because of similar d spacings.

The TEM image of the SP6-MnO_x shows a disordered array of fibrils around a SP-6 cell (Figure 3). This agrees with the previously reported morphology.¹⁹ The particle length and width of SP6-MnO_x, estimated from the micrograph (Figure 3B), are in the range 20–100 nm and 1.5-4 nm, respectively. In summary, our microscopic and spectroscopic studies indicate that the biologically induced Mn(II) oxidation products (located within sheaths formed around SP-6 cells) are nanosized, todorokite-like²⁰ porous MnO₂.

Acknowledgment. We thank Steven Suib for supplying the synthetic birnessite and Deanna Hurum and Ian Saratovsky for synthesizing δ -MnO₂ and buserite. This research was supported by the NSF/DOE BES EMSI program (Grant No. 9810378) at the

Figure 3. TEM micrographs of an unstained, melamin-embedded SP-6 cell coated with precipitated MnO_x (A and B). The cell features ($\sim 1 \ \mu m$ in diameter) in (A) are invisible because no staining solution was applied for TEM imaging. (B) is a magnified TEM image of a segment on the (A) micrograph.

Northwestern University IEC. XAS experiments were performed at the DND-CAT on the Advanced Photon Source.

Supporting Information Available: Materials and experimental procedures and environmental, geochemical, and geomicrobiological implications (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

References

- Phoenix, V. R.; Konhauser, K. O.; Adams, D. G.; Bottrell, S. H. Geology 2001, 29, 823–826.
- (2) Nealson, K. H.; Tebo, B. M.; Rosson, R. A. In Advances in Applied Microbiology; Laskin, A. I., Ed.; Academic Press: San Diego, CA, 1988; Vol. 33, pp 279–318.
- (3) Brouwers, G. J.; Vijgenboom, E.; Corstjens, P.; De Vrind, J. P. M.; de Vrind-de Jong, E. W. *Geomicrobiol. J.* 2000, 17, 1–24.
- (4) Tebo, B. M.; Ghiorse, W. C.; van Waasbergen, L. G.; Siering, P. L.; Caspi, R. In *Rev. Mineral.*; Banfield, J. F., Nealson, K. H., Eds.; 1997; Vol. 35, pp 225–266.
- (5) Sunda, W. G.; Kieber, D. J. Nature 1994, 367, 62-64.
- (6) Taillefert, M.; MacGregor, B. J.; Gaillard, J.-F.; Lienemann, C.-P.; Perret, D.; Stahl, D. A. Environ. Sci. Technol. 2002, 36, 468–476.
- (7) Huang, P. M. Soil Sci. Soc. Am. Spec. Publ. 1991, 27, 191-230.
- (8) Nelson, Y. M.; Lion, L. W.; Shuler, M. L.; Ghiorse, W. C. Environ. Sci. Technol. 2002, 36, 421–425.
- (9) Tian, Z.-R.; Tong, W.; Wang, J.-Y.; Duan, N.-G.; Krishnan, V. V.; Suib, S. L. Science 1997, 276, 926–929.
- (10) Manceau, A.; Combes, J. M. Phys. Chem. Miner. 1988, 15, 283-295.
- (11) Manceau, A.; Gorshkov, A. I.; Drits, V. A. Am. Mineral. 1992, 77, 1144–1157.
- (12) Bargar, J. R.; Tebo, B. M.; Villinski, J. E. Geochim. Cosmochim. Acta 2000, 64, 2775–2778.
- (13) Post, J. E. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 3447-3454.
- (14) Julien, C.; Massot, M. Phys. Chem. Chem. Phys. 2002, 4, 4226-4235.
- (15) Bernard, M. C.; Goff, A. H. L.; Thi, B. V.; Detorresi, S. C. J. Electrochem. Soc. 1993, 140, 3065–3070.
- (16) Kim, H.-S.; Stair, P. C. J. Phys. Chem. B, to be submitted for publication.
- (17) Julien and Massot¹⁴ reported that a decrease in the Raman frequency associated with two sets of stretching modes (denoted v_1 and v_2) in the range of 500–700 cm⁻¹ measured from manganese oxide minerals correlated with an increase in the number of shared edges per MnO₆ octahedron. The frequency of the strongest (v_1) Raman band is inversely proportional to the number of shared edges per MnO₆ octahedron. Although todorokite was not included in their correlation, it indicates that both of the v_1 and v_2 Raman frequencies for manganese oxide with 4.7 shared edges per MnO₆ octahedron should be at ~600–610 cm⁻¹. Therefore, our measured UV Raman spectrum from todorokite is in good agreement with the Raman frequencies estimated for todorokite.
- (18) Takematsu, N.; Kusakabe, H.; Sato, Y.; Okabe, S. J. Oceanogr. Soc. Jpn. 1988, 44, 235–243.
- (19) Emerson, D.; Ghiorse, W. C. Appl. Environ. Microbiol. 1992, 58, 4001– 4010.
- (20) We spectroscopically compared SP6-MnO_x to MnO₂ reference materials including the three most abundant MnO₂ materials in aquatic systems: todorokite, synthetic birnessite, and buserite, and δ -MnO₂ (synthetic vernadite). One may argue that other MnO₂'s may resemble SP6-MnO_x in terms of either EXAFS or Raman spectroscopic data. However, the identical widths (even after dehydration) of the UV Raman bands centered at 630 and 660 cm⁻¹ for SP6-MnO_x and todorokite minimize the possibility.

JA0375784